
circuit
Release 2.0.1

Reity LLC

Mar 29, 2023

CONTENTS

1 Installation and Usage 3
1.1 Examples . 3

2 Development 5
2.1 Documentation . 5
2.2 Testing and Conventions . 5
2.3 Contributions . 6
2.4 Versioning . 6
2.5 Publishing . 6

2.5.1 circuit module . 6

Python Module Index 27

Index 29

i

ii

circuit, Release 2.0.1

Pure-Python library for building and working with logical circuits.

CONTENTS 1

https://badge.fury.io/py/circuit
https://circuit.readthedocs.io/en/latest/?badge=latest
https://github.com/reity/circuit/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/reity/circuit?branch=main

circuit, Release 2.0.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install circuit

The library can be imported in the usual way:

import circuit
from circuit import *

1.1 Examples

This library makes it possible to programmatically construct logical circuits consisting of interconnected logic gates.
The functions corresponding to individual logic gates are represented using the logical library. In the example below,
a simple conjunction circuit is constructed, and its input and output gates (corresponding to the logical unary identity
function) are created and designated as such:

>>> from circuit import circuit, op
>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.count() # Number of gates in the circuit.
4

The gate list associated with a circuit can be converted into a concise human-readable format, enabling manual inspec-
tion of the circuit:

>>> c.gates.to_legible()
(('id',), ('id',), ('and', 0, 1), ('id', 2))

The circuit accepts two input bits (represented as integers) and can be evaluated on any list of two bits using the
evaluate method. The result is a bit vector that includes one bit for each output gate:

>>> c.evaluate([0, 1])
[0]
>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [0], [0], [1]]

3

https://pypi.org/project/circuit
https://pypi.org/project/logical
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.circuit.evaluate

circuit, Release 2.0.1

Note that the order of the output bits corresponds to the order in which the output gates were originally introduced using
the gate method. It is possible to specify the signature of a circuit (i.e., the organization of input gates and output gates
into distinct bit vectors of specific lengths) at the time the circuit object is created:

>>> from circuit import signature
>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.not_, [g4])
>>> g6 = c.gate(op.id_, [g4], is_output=True)
>>> [list(c.evaluate([bs])) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[[0]], [[1]], [[1]], [[0]]]

It is also possible to remove all internal gates from which an output gate cannot be reached (such as g5 in the example
above). Doing so does not change the order of the input gates or the order of the output gates:

>>> c.count()
7
>>> c.prune_and_topological_sort_stable()
>>> c.count()
6

Other methods make it possible to discard a gate, to replace a collection of gates, and to convert a circuit into a boolean
function. Descriptions and examples of these and other methods can be found in the documentation for the main library
module.

4 Chapter 1. Installation and Usage

https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.circuit.gate
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.gates.discard
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.gates.replace
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.circuit.to_logical
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html#circuit.circuit.circuit.to_logical
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html
https://circuit.readthedocs.io/en/2.0.1/_source/circuit.html

CHAPTER

TWO

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

2.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

2.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/circuit/circuit.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/circuit

5

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.pycqa.org

circuit, Release 2.0.1

2.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page page for this library.

2.4 Versioning

Beginning with version 0.2.0, the version number format for this library and the changes to the library associated with
version number increments conform with Semantic Versioning 2.0.0.

2.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged
versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive using the wheel package:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI using the twine package:

python -m twine upload dist/*

2.5.1 circuit module

Pure-Python library for building and working with logical circuits (both as expressions and as graphs).

This library makes it possible to construct logical circuits programmatically by building them up from individual gates.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.count()
4

The gate list associated with a circuit can be converted into a concise human-readable format using the gates.
to_legible method, enabling manual inspection of the circuit.

6 Chapter 2. Development

https://github.com/reity/circuit
https://semver.org/#semantic-versioning-200
https://pypi.org/project/circuit
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org/project/wheel
https://pypi.org
https://pypi.org/project/twine

circuit, Release 2.0.1

>>> c.gates.to_legible()
(('id',), ('id',), ('and', 0, 1), ('id', 2))

A circuit object can be evaluated on any list of bits using the evaluate method. The result is a bit vector that
includes one bit for each output gate.

>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [0], [0], [1]]

Please refer to the documentation for the circuit class for more details on usage, features, and available methods.

circuit.circuit.operation
alias of logical.logical.logical

circuit.circuit.op
alias of logical.logical.logical

class circuit.circuit.gate(operation=None, inputs=None, outputs=None, is_input=False, is_output=False)
Bases: object

Data structure for an individual circuit logic gate, with attributes that indicate the logical operation corresponding
to the gate (represented using an instance of the logical class that is defined in the logical library), the other
gate connected gate instances, and whether the gate is designated as an input and/or output gate of the overall
circuit to which it belongs.

Parameters

• operation (Optional[logical]) – Logical operation that the gate represents.

• inputs (Optional[Sequence[Optional[gate]]]) – List of input gate object references.

• outputs (Optional[Sequence[gate]]) – List of output gate object references.

• is_input (bool) – Flag indicating if this is an input gate for a circuit.

• is_output (bool) – Flag indicating if this is an output gate for a circuit.

>>> g0 = gate(op.id_, [])
>>> g1 = gate(op.not_, [])
>>> g2 = gate(op.and_, [g0, g1])

The list of inputs, if specified, must have either no entries or a number of entries that matches the operation arity.
Otherwise, an exception is raised.

>>> g3 = gate(op.and_, [g2])
Traceback (most recent call last):
...

ValueError: number of inputs must equal operation arity or zero

output(other)
Designate another gate as an output gate of this gate.

Parameters other (gate) – Gate to be designated as an output gate of this gate.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)

(continues on next page)

2.5. Publishing 7

https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/functions.html#object
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://pypi.org/project/logical
https://docs.python.org/3/library/typing.html#typing.Optional
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

circuit, Release 2.0.1

(continued from previous page)

>>> g2.output(g3) # Confirm this is idempotent.
>>> c.count()
4

class circuit.circuit.gates(iterable=(), /)
Bases: list

Data structure for a collection of gates. It is usually assumed that the gates within an instance of this class are
related (e.g., they are all part of the same circuit, as is the case when an instance of this class is found as the
gates attribute of a circuit instance) or, at least, interconnected. However, an instance of this class could be
used to represent any collection of gates.

static mark(g)
Mark all gates reachable from the supplied gate via recursive traversal of input gate references.

Parameters g (gate) – Gate from which to mark all reachable gates (via input references).

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> gates.mark(g3)
>>> all(g.is_marked for g in [g0, g1, g2, g3])
True

gate(operation=None, inputs=None, outputs=None, is_input=False, is_output=False)
Add a gate with the specified attribute values to this collection of gates.

Parameters

• operation (Optional[logical]) – Logical operation that the gate represents.

• inputs (Optional[Sequence[Optional[gate]]]) – List of input gate object references.

• outputs (Optional[Sequence[gate]]) – List of output gate object references.

• is_input (bool) – Flag indicating if this is an input gate for a circuit.

• is_output (bool) – Flag indicating if this is an output gate for a circuit.

The circuit.gatemethod is a wrapper for the gates.gatemethod that belongs that circuit’s associated
gates instance (that instance being stored under the circuit’s gates attribute).

inputs()
Construct a sequence consisting of all gate objects and None placeholder entries that appear as inputs to
gate objects in this instance. For any gate instance that does not have any inputs specified, it is automat-
ically treated as if the correct number of inputs (based on the arity of the operation corresponding to that
gate) is specified using None placeholder entries.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [None])
>>> g1 = gs.gate(op.id_, [None])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])
>>> gates([g0, g1]).inputs()

(continues on next page)

8 Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

circuit, Release 2.0.1

(continued from previous page)

[None, None]
>>> gates([g0, g1, g2, g5]).inputs() == [None, None, g3]
True

Duplicate gate entries may appear in the result if the same gate object is an input for multiple gate objects
in this instance.

>>> gates([g4, g5]).inputs() == [g3, g3]
True

Return type Sequence[Optional[gate]]

outputs()
Construct a sequence of gates consisting of all gate objects that appear as outputs of gate objects in this
instance.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [None])
>>> g1 = gs.gate(op.id_, [None])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])
>>> gates([g0, g1]).outputs() == [g2, g3]
True
>>> gates([g4, g5]).outputs()
[]

Duplicate gate entries may appear in the result if the same gate object is an output for multiple gate
objects in this instance.

>>> gates([g0, g1, g2, g5]).outputs() == [g3, g3]
True

Return type Sequence[gate]

sources()
Construct a gate sequence consisting of all gate objects in this instance that have no inputs specified, or
have at least one input that is either specified with a placeholder None or is a gate instance that does not
appear in this gate list.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.id_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [None, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])
>>> gates([g0, g1, g2, g3]).sources() == [g0, g1, g3]
True
>>> gates([g0, g2, g4]).sources() == [g0, g4]
True

2.5. Publishing 9

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence

circuit, Release 2.0.1

Return type Sequence[gate]

sinks()
Construct a gate sequence consisting of all gate objects in this instance whose outputs are not consumed
by other gates in this instance (though they may have output gates that occur outside of this instance).

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.id_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])
>>> gates([g0, g1, g2, g3]).sinks() == [g3]
True
>>> gates([g0, g2, g4]).sinks() == [g2, g4]
True

Return type Sequence[gate]

discard(g)
Remove the specified gate from all input and output lists of any gate objects in this gate list, and then delete
it from this gate list. If the specified gate appears in an input list of another gate instance, the placeholder
None replaces it.

Parameters g (gate) – Gate that must be removed from this instance.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.not_, [g0])
>>> g2 = gs.gate(op.and_, [g0, g1])
>>> g3 = gs.gate(op.not_, [g2])
>>> gs.discard(g2)
>>> gs.to_legible()
(('id',), ('not', 0), ('not', None))

replace(old, new)
Replace a collection of gates with a different collection of gates, stitching together the new collection of
gates with the input and output gates to which the old collection was connected.

Parameters

• old (gates) – Gate collection that must be removed.

• new (gates) – Gate collection that must replace the removed gate collection.

As an example, suppose that the gate collection below is constructed.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.id_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])

10 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

circuit, Release 2.0.1

It is possible to construct another gate collection hs and to replace a portion of gs with it. The gate
instances to be replaced are discarded (using the discard method).

>>> hs = gates()
>>> h0 = hs.gate(op.xor_, [None, None])
>>> h1 = hs.gate(op.not_, [h0])
>>> gs.replace(gates([g2, g3]), gates(hs))
>>> gs.to_legible()
(('id',), ('id',), ('xor', 0, 1), ('not', 2), ('not', 3), ('not', 3))

The replacement occurs in-place and modifies the instance gs. Subsequent replacement operations can be
performed on the same gates instance.

>>> js = gates()
>>> j0 = js.gate(op.or_, [None, None])
>>> j1 = js.gate(op.id_, [j0])
>>> gs.replace(gates(hs), gates(js))
>>> gs.to_legible()
(('id',), ('id',), ('or', 0, 1), ('id', 2), ('not', 3), ('not', 3))

Note in the example below that if a gate instance does not appear as a sink of the gate collection to be
replaced, it may not appear as an input in any other gate. In the example below, the op.not_ gate h1 is an
input to g5 but is not a sink in the gate collection ks.

>>> ks = gates()
>>> k0 = ks.gate(op.imp_, [None, None])
>>> k1 = ks.gate(op.id_, [k0])
>>> gs.replace(gates(js + [g4]), gates(ks))
Traceback (most recent call last):
...

ValueError: cannot replace a gate that is not a sink ... that collection

All gates in the old collection must already be in this instance.

>>> gs = gates()
>>> g0 = gs.gate(op.not_, [])
>>> hs = gates()
>>> h0 = hs.gate(op.id_, [])
>>> gs.replace(gates([h0]), gates([h0]))
Traceback (most recent call last):
...

ValueError: not all gates to be replaced appear in the gate collection

None of the gates in the new collection may appear in this instance before replacement occurs.

>>> gs = gates()
>>> g0 = gs.gate(op.not_, [])
>>> gs.replace(gates([g0]), gates([g0]))
Traceback (most recent call last):
...

ValueError: one or more replacement gates already appear in the gate collection

The gate collection below is used for the remaining examples.

2.5. Publishing 11

circuit, Release 2.0.1

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.id_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.and_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> g5 = gs.gate(op.not_, [g3])

The gate collection that must be replaced and its replacement must have the same number of inputs and the
same number of sink gates.

>>> hs = gates()
>>> h0 = hs.gate(op.not_, [None])
>>> gs.replace(gates([g3]), gates(hs))
Traceback (most recent call last):
...

ValueError: gate collection to be replaced and its ... same number of inputs
>>> hs = gates()
>>> h0 = hs.gate(op.xor_, [])
>>> h1 = hs.gate(op.id_, [h0])
>>> h2 = hs.gate(op.not_, [h0])
>>> gs.replace(gates([g3]), gates(hs))
Traceback (most recent call last):
...

ValueError: gate collection to be replaced and its ... same number of sink gates

If a gate collection and its replacement both have the same number of sink gates, then the old and new sink
gates are associated with one another according to their position. Each new sink is connected to the output
gate instance of the corresponding old sink. The example below also illustrates that if a replacement gate
object has no inputs specified, this method assumes that the appropriate number of placeholder None inputs
(corresponding to the arity of the operation of that gate object) is present.

>>> gs.to_legible()
(('id',), ('id',), ('not', 0), ('and', 1, 2), ('not', 3), ('not', 3))
>>> hs = gates()
>>> h0 = hs.gate(op.xor_, []) # Empty input list understood to be ``[None,␣
→˓None]``.
>>> h1 = hs.gate(op.id_, [h0])
>>> h2 = hs.gate(op.not_, [h0])
>>> gs.replace(gates([g4, g5]), gates(hs))
>>> gs.to_legible()
(('id',), ('id',), ('not', 0), ('and', 1, 2), ('xor', 3, 3), ('id', 4), ('not',␣
→˓4))

evaluate(input)
Evaluate the collection of gates in this instance, drawing from the supplied input whenever an individual
gate object either has no specified input gates or has input gates that do not appear in this instance of
gates.

Parameters input (Iterable[int]) – Input bit vector.

This method is provided primarily to enable the evaluation of subsets of gate collections. In the example
below, the entire collection of gates in an instance is evaluated on two inputs.

12 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int

circuit, Release 2.0.1

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.and_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.xor_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> gs.evaluate([1, 1, 1])
[0]
>>> gs.evaluate([1, 0, 1])
[1]

In the example below, a new instance is constructed that contains only a subset of the gate instances that
are found in the example above. Note that the supplied input is consumed in order to determine the sole
argument for the operation of g2 and the left-hand argument for the operation of g3.

>>> hs = gates([g2, g3, g4])
>>> hs.evaluate([1, 1])
[0]
>>> [hs.evaluate([x, y]) for x in (0, 1) for y in (0, 1)]
[[0], [1], [1], [0]]

Note that this method is sensitive to the order in which gates appear, as gate objects are evaluated in the
order in which they are encountered during an iteration of this instance.

>>> gs = gates()
>>> g0 = gs.gate(op.not_, [])
>>> g1 = gs.gate(op.id_, [])
>>> gs.evaluate([0, 1])
[1, 1]
>>> hs = gates([g1, g0])
>>> hs.evaluate([0, 1])
[0, 0]

Each gate instance must either have no input gates specified, or must have all input gates specified (though
it is acceptable for those input gates not to be found in this gates instance or even to be specified using
the placeholder None). This is because, otherwise, there is no way to unambiguously determine which
argument(s) may be missing for operations having arities of two or greater.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.imp_, [None, g0])
>>> gs.evaluate([0, 1])
[0]
>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.imp_, [g0, None])
>>> gs.evaluate([0, 1])
[1]
>>> gs = gates()
>>> g0 = gs.gate(op.not_, [])
>>> g1 = gs.gate(op.and_, [g0, None])
>>> del g1.inputs[1]
>>> gs.evaluate([0, 1])

(continues on next page)

2.5. Publishing 13

circuit, Release 2.0.1

(continued from previous page)

Traceback (most recent call last):
...

ValueError: number of gate input entries does not match gate operation arity

Return type Sequence[int]

to_logical()
Convert an instance into the boolean function to which it corresponds (represented as an instance of the
logical.logical.logical class). The running time and memory usage of this method are exponential
in the number of required inputs.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.and_, [])
>>> g2 = gs.gate(op.not_, [g0])
>>> g3 = gs.gate(op.xor_, [g1, g2])
>>> g4 = gs.gate(op.not_, [g3])
>>> gs.to_logical()
(0, 0, 0, 1, 1, 1, 1, 0)

Any attempt to convert an instance that has more than one output raises an exception.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [])
>>> g1 = gs.gate(op.and_, [])
>>> gs.to_logical()
Traceback (most recent call last):
...

ValueError: gate collection must have exactly one output when evaluated

Return type logical

to_immutable()
Return a canonical immutable representation of the list of gates represented by this instance.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.gates.to_immutable()
(((0, 1),), ((0, 1),), ((1, 0), 0), ((1, 0), 1), ((0, 1, 1, 0), 2, 3), ((0, 1),␣
→˓4))

Immutable objects can be useful for performing comparisons or for using container types such as set.

>>> c.gates.to_immutable() == c.gates.to_immutable()
True
>>> len({c.gates.to_immutable(), c.gates.to_immutable()})
1

14 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/stdtypes.html#set

circuit, Release 2.0.1

Placeholder gate inputs are permitted if a gate collection is constructed on its own.

>>> gs = gates()
>>> g0 = gs.gate(op.id_, [None])
>>> g1 = gs.gate(op.not_, [g0])
>>> gs.to_immutable()
(((0, 1), None), ((1, 0), 0))

Return type tuple

to_legible()
Return a canonical human-readable representation of the list of gates represented by this instance.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.gates.to_legible()
(('id',), ('id',), ('not', 0), ('not', 1), ('xor', 2, 3), ('id', 4))

Placeholder gate inputs are permitted if a gate collection is constructed on its own.

>>> gs = gates()
>>> g0 = gs.gate(op.not_, [None])
>>> g1 = gs.gate(op.not_, [g0])
>>> gs.to_legible()
(('not', None), ('not', 0))

Return type tuple

class circuit.circuit.signature(input_format=None, output_format=None)
Bases: object

Class for representing circuit signatures (i.e., the input and output bit vector formats associated with evaluation
of a circuit).

Parameters

• input_format (Optional[Sequence[int]]) – List of bit vector lengths of inputs.

• output_format (Optional[Sequence[int]]) – List of bit vector lengths of outputs.

An instance of this class can be used (1) to convert circuit evaluation inputs from the specific signature-compatible
format into a flattened list of bits and (2) to convert the flat list of bits obtained as a circuit evaluation output into
a signature-compatible format. If a circuit instance has been assigned a signature, conversion of inputs and
outputs is performed automatically by the evaluate method.

>>> s = signature([2, 2], [3, 1])
>>> s.input([[1, 0], [0, 1]])
[1, 0, 0, 1]
>>> s.output([1, 1, 0, 0])
[[1, 1, 0], [0]]

2.5. Publishing 15

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int

circuit, Release 2.0.1

If no formats are supplied, the signature methods expect that inputs and outputs are flat lists or tuples of integers
that represent bits.

>>> s = signature()
>>> s.input([1, 0, 1])
[1, 0, 1]
>>> s.input((1, 0, 1))
[1, 0, 1]
>>> s.input([[1], [1], [1]])
Traceback (most recent call last):
...

TypeError: input must be a list or tuple of integers
>>> s.input([2, 3, 4])
Traceback (most recent call last):
...

ValueError: each bit must be represented by 0 or 1
>>> s.output([1, 0, 1])
[1, 0, 1]
>>> s.output((1, 0, 1))
[1, 0, 1]

The conversion methods also perform checks to ensure that the input has valid format, types, and values.

>>> s.input({1, 2, 3})
Traceback (most recent call last):
...

TypeError: input must be a list or tuple of integers
>>> s = signature([2], [1])
>>> s.input([[2], [3], [4]])
Traceback (most recent call last):
...

ValueError: each bit must be represented by 0 or 1

Signature specifications must be lists or tuples of integers, where each integer represents the length of an input
or output bit vector.

>>> signature(['a', 'b'], [1])
Traceback (most recent call last):
...

TypeError: signature input format must be a tuple or list of integers
>>> signature([2], ['c'])
Traceback (most recent call last):
...

TypeError: signature output format must be a tuple or list of integers

input(input)
Convert an input organized in a way that matches the signature’s input format into a flat list of bits.

Parameters input (Sequence[Sequence[int]]) – Input bit vector that matches signature.

>>> s = signature(input_format=[2, 3])
>>> s.input([[1, 0], [0, 1, 1]])
[1, 0, 0, 1, 1]

Return type Sequence[int]

16 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int

circuit, Release 2.0.1

output(output)
Convert a flat list of output bits into a format that matches the signature’s output format specification.

Parameters output (Sequence[int]) – Flat output bit vector to convert (according to signa-
ture).

>>> s = signature(output_format=[2, 3])
>>> list(s.output([1, 0, 0, 1, 1]))
[[1, 0], [0, 1, 1]]

Return type Sequence[Sequence[int]]

class circuit.circuit.circuit(sig=None)
Bases: object

Data structure for a circuit instance (with methods that enable counting of gates, pruning of inconsequential
gates, and evaluation of the circuit instance on input bit vectors).

Parameters sig (Optional[signature]) – Signature (input and output bit vector lengths) for the
circuit.

Each gate in a circuit is associated with one logical operation. Gate operations are represented using instances
of the logical class exported by the logical library. For convenience, the op and operation constants defined
in this module are synonyms for logical.

When programmatically constructing circuits using a circuit object’s gate method, every input and every
output must be represented by a dedicated identity gate (for more information on this, see the gate method
documentation). In the example below, a circuit is constructed that has two input gates, two internal gates, and
one output gate.

>>> c = circuit()
>>> c.count()
0
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.or_, [g0, g1]) # Example of gate that can be pruned.
>>> g4 = c.gate(op.id_, [g2], is_output=True)
>>> c.count()
5

The gate list associated with a circuit can be converted into a concise human-readable format using the gates.
to_legible method, enabling manual inspection of the circuit.

>>> c.gates.to_legible()
(('id',), ('id',), ('and', 0, 1), ('or', 0, 1), ('id', 2))

An instance can be evaluated on any list of bits using the evaluate method. The result is a bit vector that
includes one bit for each output gate.

>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [0], [0], [1]]

Using the prune_and_topological_sort_stable method, it is possible to remove all internal gates from a
circuit from which an output gate cannot be reached. Doing so does not change the order of the input gates or
the order of the output gates.

2.5. Publishing 17

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://pypi.org/project/logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical

circuit, Release 2.0.1

>>> c.prune_and_topological_sort_stable()
>>> c.count()
4
>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [0], [0], [1]]

It is possible to specify the signature of a circuit using the signature class.

>>> c = circuit(signature([2], [1]))
>>> c.count()
0
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.count()
6

Specifying a signature changes the required format for input bit vectors. Rather than a list of integers, the input
should consist of a list of lists of integers (one list of integers for each input). Thus, an input for the above circuit
would be [[0, 1]] rather than [0, 1] (because the circuit expects one input having two bits). Specifying a
signature similarly changes the output format in the same manner, as some circuits may have a signature that
indicates that the output consists of some number of bit vectors, each having a specific length. The circuit above
has one output: a bit vector having a single bit. Thus, the outputs are of the form [[1]].

>>> [list(c.evaluate(bss)) for bss in [[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]]]
[[[0]], [[1]], [[1]], [[0]]]
>>> [list(c.evaluate(bss)) for bss in [[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]]]
[[[0]], [[1]], [[1]], [[0]]]

The circuit in the example below is identical to the one in the example above, but has a different signature. Notice
that inputs to the evaluate method must have a format that conforms to the circuit’s signature. In the example
below, the inputs now consist of two bit vectors. Thus, what was above an input of the form [[0, 1]] must
instead be [[0], [1]] (i.e., two inputs each having one bit).

>>> c = circuit(signature([1, 1], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> [list(c.evaluate(bss)) for bss in [[[0], [0]], [[0], [1]], [[1], [0]], [[1],␣
→˓[1]]]]
[[[0]], [[1]], [[1]], [[0]]]

The signature of a circuit instance c is stored in the attribute c.signature. It is possible to update the signature
for a circuit by assigning the signature to this attribute. The example below reverts the signature of the circuit c
defined above to the default (i.e., one input and one output).

>>> c.signature = signature()
(continues on next page)

18 Chapter 2. Development

circuit, Release 2.0.1

(continued from previous page)

>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [1], [1], [0]]

Circuits can contain constant gates that take no inputs. These correspond to one of the two nullary logical
operations that appear in the set nullary defined in the logical library). This also implies that circuits that take
no inputs can be defined and evaluated.

>>> c = circuit()
>>> g0 = c.gate(op.nt_)
>>> g1 = c.gate(op.nf_)
>>> g2 = c.gate(op.or_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.evaluate([])
[1]

A signature can also be used to indicate that a circuit takes no inputs. Note that if a signature is supplied for such
a circuit, a list of inputs containing one input that contains no bits must still be supplied in the list of inputs to
the evaluate method.

>>> c = circuit(signature([0], [1]))
>>> g0 = c.gate(op.nt_)
>>> g1 = c.gate(op.nf_)
>>> g2 = c.gate(op.or_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.evaluate([[]])
[[1]]

Circuits may also have input gates or internal gates that have no path to any gate that has been designated as an
output gate. Such gates may or may not have outgoing connections to other gates (i.e., they may be non-sinks or
they may be sinks). This implies that circuits that consist of two or more disconnected components are permitted.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True) # Input (non-sink) with no path to output.
>>> g1 = c.gate(op.id_, is_input=True) # Input (sink) with no path to output.
>>> g2 = c.gate(op.not_, [g0]) # Internal gate (non-sink) with no path to output.
>>> g3 = c.gate(op.and_, [g0, g2]) # Internal gate (sink) no path to output.
>>> g4 = c.gate(op.nt_)
>>> g5 = c.gate(op.nf_)
>>> g6 = c.gate(op.or_, [g4, g5])
>>> g7 = c.gate(op.id_, [g6], is_output=True)

When evaluating a circuit, the input bit vector must include a bit for every input gate (even if some of those gates
have no paths to an output gate).

>>> c.evaluate([0, 1])
[1]

Pruning a circuit will remove interior gates that have no path to any output gate, but will not remove any input
gates (preserving the circuit’s signature).

>>> c.count()
8
>>> c.prune_and_topological_sort_stable()

(continues on next page)

2.5. Publishing 19

https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.nullary
https://pypi.org/project/logical

circuit, Release 2.0.1

(continued from previous page)

>>> c.count()
6
>>> [g.operation.name() for g in c.gates]
['id', 'id', 'nt', 'nf', 'or', 'id']

gate(operation=None, inputs=None, outputs=None, is_input=False, is_output=False)
Add a gate with the specified attribute values to this collection of gates.

Parameters

• operation (Optional[logical]) – Logical operation that the gate represents.

• inputs (Optional[Sequence[gate]]) – List of input gate object references.

• outputs (Optional[Sequence[gate]]) – List of output gate object references.

• is_input (bool) – Flag indicating if this is an input gate for a circuit.

• is_output (bool) – Flag indicating if this is an output gate for a circuit.

Gate operations are represented using instances of the logical class that is exported by the logical library
(note that the op and operation constants defined in this module are synonyms for logical).

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.count()
4
>>> len(c.gates)
4

This library enforces the convention that every circuit input and every circuit output must have a dedi-
cated identity gate (distinct from all internal gates). This is to ensure that the number of inputs (and how
they are ordered) and the number of outputs (and how they are ordered) is always well-defined and available
to the evaluatemethod (even if there is no signature associated with the circuit instance). Thus, only
a gate corresponding to an identity operation can be designated as an input gate or as an output gate.

>>> c = circuit()
>>> g0 = c.gate(op.not_, is_input=True)
Traceback (most recent call last):
...

ValueError: input gates must correspond to the identity operation

>>> g0 = c.gate(op.id_, is_input=True)
>>> g4 = c.gate(op.not_, [g0], is_output=True)
Traceback (most recent call last):
...

ValueError: output gates must correspond to the identity operation

Once a gate is designated as an output gate, it cannot be an input into another gate.

>>> g4 = c.gate(op.not_, [g3])
Traceback (most recent call last):

(continues on next page)

20 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Optional
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://pypi.org/project/logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical

circuit, Release 2.0.1

(continued from previous page)

...
ValueError: output gates cannot be designated as inputs into other gates

This method is a wrapper for the gates.gate method of this instance’s gates attribute.

While None can be used as a gate input placeholder when a gate is added to a gates instance, this is not
permitted when adding a gate to a circuit instance.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.and_, [g0, None])
Traceback (most recent call last):
...

ValueError: circuit gate inputs must be explicitly identified gates

Furthermore, any non-input gate corresponding to an operation with non-zero arity must specify its inputs
and the number of inputs must match the operation arity.

>>> c = circuit()
>>> g0 = c.gate(op.nf_) # Nullary false, an operation with zero arity.
>>> g1 = c.gate(op.not_)
Traceback (most recent call last):
...

ValueError: non-input circuit gate must have its inputs specified
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g1])
Traceback (most recent call last):
...

ValueError: number of circuit gate inputs must match arity of gate operation

count(predicate=lambda _: ...)
Count the number of gates that satisfy the supplied predicate. If no predicate is supplied, the total number
of gates in the circuit is returned.

Parameters predicate (Callable[[gate], bool]) – Function that distinguishes certain gate
objects.

>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.count(lambda g: g.operation == op.id_)
3
>>> c.count()
6

Return type int

depth(predicate=lambda _: ...)
Calculate the maximum circuit depth. This method assumes the circuit has already been pruned and sorted,
and counts all gates by default (including input gates, output gates, identity gates, and gates that correspond

2.5. Publishing 21

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

circuit, Release 2.0.1

to nullary operations).

Parameters predicate (Callable[[gate], bool]) – Function that distinguishes certain gate
objects.

It is possible to calculate depth with respect to a specific subset of gates, such as the AND-depth (i.e., the
maximum number of AND gates that cannot be parallelized. Identity gates are ignored by default).

The example below tests this method on a large unbalanced circuit.

>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> gk = g2
>>> for _ in range(1000-2):
... gk = c.gate(op.and_, [gk, g3])
>>> g4 = c.gate(op.xor_, [g2, gk])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.depth()
1002

The example below tests a circuit containing only unary gates.

>>> c = circuit(signature([1], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.not_, [g0])
>>> g2 = c.gate(op.not_, [g1])
>>> g3 = c.gate(op.not_, [g2])
>>> g4 = c.gate(op.not_, [g3])
>>> g5 = c.gate(op.not_, [g4])
>>> g6 = c.gate(op.not_, [g5])
>>> g7 = c.gate(op.not_, [g6])
>>> g8 = c.gate(op.not_, [g7])
>>> g9 = c.gate(op.id_, [g8], is_output=True)
>>> c.depth()
10

The example below tests a balanced binary tree circuit (an equivalent of the eight-input XOR gate).

>>> c = circuit(signature([8], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.id_, is_input=True)
>>> g3 = c.gate(op.id_, is_input=True)
>>> g4 = c.gate(op.id_, is_input=True)
>>> g5 = c.gate(op.id_, is_input=True)
>>> g6 = c.gate(op.id_, is_input=True)
>>> g7 = c.gate(op.id_, is_input=True)
>>> g8 = c.gate(op.xor_, [g0, g1])
>>> g9 = c.gate(op.xor_, [g2, g3])
>>> g10 = c.gate(op.xor_, [g4, g5])
>>> g11 = c.gate(op.xor_, [g6, g7])
>>> g12 = c.gate(op.xor_, [g8, g9])

(continues on next page)

22 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

circuit, Release 2.0.1

(continued from previous page)

>>> g13 = c.gate(op.xor_, [g10, g11])
>>> g14 = c.gate(op.xor_, [g12, g13])
>>> g15 = c.gate(op.id_, [g14], is_output=True)
>>> c.depth()
5
>>> c.depth(lambda _g: _g.operation == op.xor_)
3
>>> c.depth(lambda _g: _g.operation == op.and_)
0

Return type int

prune_and_topological_sort_stable()
Prune any gates from which an output gate cannot be reached and topologically sort the gates (with input
gates all in their original order at the beginning and output gates all in their original order at the end).

>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g2], is_output=True)
>>> c.count()
6
>>> c.prune_and_topological_sort_stable()
>>> c.count()
4
>>> [g.operation.name() for g in c.gates]
['id', 'id', 'not', 'id']

evaluate(input)
Evaluate the circuit on an input organized in a way that matches the circuit signature’s input format, and
return an output that matches the circuit signature’s output format.

Parameters input (Union[Sequence[int], Sequence[Sequence[int]]]) – Input bit vector or
bit vectors.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> list(c.evaluate([0, 1]))
[0]

It is also possible to evaluate a circuit that has a signature specified. Note that in this case, the inputs and
outputs must be lists of lists (to reflect that there are multiple inputs).

2.5. Publishing 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int

circuit, Release 2.0.1

>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> list(c.evaluate([[0, 1]]))
[[0]]

Any attempt to evaluate a circuit on an invalid input raises an exception.

>>> c.evaluate([0, 0])
Traceback (most recent call last):
...

TypeError: input must be a list or tuple of integer lists

If a signature has been specified for the circuit, any attempt to evaluate the circuit on an input that does not
conform to the signature raises an exception.

>>> c.evaluate([[0, 0, 0]])
Traceback (most recent call last):
...

ValueError: input format does not match signature

Return type Union[Sequence[int], Sequence[Sequence[int]]]

to_logical()
Convert a circuit into the boolean function to which it corresponds (represented as an instance of the
logical.logical.logical class). The running time and memory usage of this method are exponential
in the number of input gates.

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.id_, is_input=True)
>>> g3 = c.gate(op.and_, [g0, g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.to_logical()
(0, 1, 0, 1, 0, 1, 1, 0)

This method supports circuits that have a signature specified.

>>> c = circuit(signature([3], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.id_, is_input=True)
>>> g3 = c.gate(op.and_, [g0, g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.id_, [g4], is_output=True)
>>> c.to_logical()
(0, 1, 0, 1, 0, 1, 1, 0)

Any attempt to convert a circuit that has more than one output gate raises an exception.

24 Chapter 2. Development

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical

circuit, Release 2.0.1

>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.not_, [g0])
>>> g2 = c.gate(op.id_, [g0])
>>> g3 = c.gate(op.id_, [g1], is_output=True)
>>> g4 = c.gate(op.id_, [g2], is_output=True)
>>> c.to_logical()
Traceback (most recent call last):
...

ValueError: circuit must have exactly one output gate

Return type logical

2.5. Publishing 25

https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical

circuit, Release 2.0.1

26 Chapter 2. Development

PYTHON MODULE INDEX

c
circuit.circuit, 6

27

circuit, Release 2.0.1

28 Python Module Index

INDEX

C
circuit (class in circuit.circuit), 17
circuit.circuit

module, 6
count() (circuit.circuit.circuit method), 21

D
depth() (circuit.circuit.circuit method), 21
discard() (circuit.circuit.gates method), 10

E
evaluate() (circuit.circuit.circuit method), 23
evaluate() (circuit.circuit.gates method), 12

G
gate (class in circuit.circuit), 7
gate() (circuit.circuit.circuit method), 20
gate() (circuit.circuit.gates method), 8
gates (class in circuit.circuit), 8

I
input() (circuit.circuit.signature method), 16
inputs() (circuit.circuit.gates method), 8

M
mark() (circuit.circuit.gates static method), 8
module

circuit.circuit, 6

O
op (in module circuit.circuit), 7
operation (in module circuit.circuit), 7
output() (circuit.circuit.gate method), 7
output() (circuit.circuit.signature method), 17
outputs() (circuit.circuit.gates method), 9

P
prune_and_topological_sort_stable() (cir-

cuit.circuit.circuit method), 23

R
replace() (circuit.circuit.gates method), 10

S
signature (class in circuit.circuit), 15
sinks() (circuit.circuit.gates method), 10
sources() (circuit.circuit.gates method), 9

T
to_immutable() (circuit.circuit.gates method), 14
to_legible() (circuit.circuit.gates method), 15
to_logical() (circuit.circuit.circuit method), 24
to_logical() (circuit.circuit.gates method), 14

29

	Installation and Usage
	Examples

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	circuit module

	Python Module Index
	Index

